Matsuda Research Group
since 2004

  at Tokyo Institute of Technology  
 
Japanese
top
member
research
publications
photos
link
access map

–––––––––––––––––––––

Future directions in biocatalysis, 2nd edition
T. Matsuda, Ed. Elsevier

was just published.
I appreciate very much the contributions of many excellent chapters.



Publications

Paper


65 Substrate Promiscuity of Thermoplasma acidophilum Malic Enzyme for CO2 Fixation Reaction
Y. Oku and T. Matsuda, JACS Au, 2024, 4, 1758|1762. doi.org/10.1021/jacsau.4c00290

64 Sustainable approach for highly-enantioselective synthesis of lactones by a Baeyer-Villiger Monooxygenase from Fusarium
L. H. L. Viet, M. Tamura, T. Matsuda, Tetrahedron, 2024, 154, 133875. doi.org/10.1016/j.tet.2024.133875

63 Immobilization of Thermoplasma acidophilum glucose dehydrogenase and isocitrate dehydrogenase through enzyme-inorganic hybrid nanocrystal formation
S. Oshima, Y. Oku, K. T.sriwong, Y. Kimura, T. Matsuda, Curr. Microbiol. 2024, 81, 67. doi.org/10.1007/s00284-023-03577-6

62 Enzyme immobilization on 3D-printed reactor for aldehyde oxidation to carboxylic acid under mild conditions
K. Nakahara, K. T.sriwong, M. A. Hawari, A. Tanaka, T. Matsuda, React. Chem. Eng. 2023, 8, 543-547. doi.org/10.1039/D2RE00547F

61 Asymmetric synthesis of sulfoxides by novel Baeyer-Villiger monooxygenase from Fusarium
L. H. L. Viet, H. Nemoto, M. Tamura, T. Matsuda, Tetrahedron, 2022, 133204.
doi.org/10.1016/j.tet.2022.133204

60@The protein-stabilizing effects of TMAO in aqueous and non-aqueous conditions
H. Monhemi, H. N. Hoang, D. M. Standley, T. Matsuda, M. R. Housaindokht
Phys. Chem. Chem. Phys. 2022, in press.

59 Rate enhancement of lipase-catalyzed reaction using CO2-expanded liquids as solvents for chiral tetralol synthesis
Y. Suzuki, K. Taniguchi, H. N. Hoang, M. Tamura, T. Matsuda
Tetrahedron Lett. 2022, 153837.

58 Facile mussel-inspired polydopamine-coated 3D-printed bioreactors for continuous flow biocatalysis
K. T.sriwong, T. Matsuda
React. Chem. Eng. 2022, 7, 1053|1060.

57 Immobilization of Baeyer-Villiger monooxygenase from acetone grown Fusarium sp.
M. Takagi, K. T.sriwong, A. Masuda, N. Kawaguchi, S. Fukui, H. L. V. Lan, D. Kato, T. Kitayama, M. Fujii, A. A. Koesoema, T. Matsuda
Biotech. Lett. 2022, 44, 461|471.

56 Geotrichum candidum acetophenone reductase immobilization on reduced graphene oxide: a promising biocatalyst for green asymmetric reduction of ketones
K. T.sriwong, R. Kamogawa, C. S. C. Issasi, M. Sasaki, T. Matsuda
Biochem. Eng. J. 2022, 177, 108263.

55 Geotrichum candidum aldehyde dehydrogenase-inorganic nanocrystal with enhanced activity
K. T.sriwong, K. Ogura, M. A. Hawari, T. Matsuda
Enzyme Microb. Technol. 2021, 150, 109866.

54 Enzymatic direct carboxylation under supercritical CO2
K. R. A. Are, S. Ohshima, Y. Koike, Y. Asanuma, S. Kashikura, M. Tamura, T. Matsuda
Biochem. Eng. J. 2021, 171, 108004.

53 CO2-expanded liquids as solvents to enhance activity of Pseudozyma antarctica lipase B towards ortho-substituted 1-phenylethanols
M. Otsu, Y. Suzuki, A. A. Koesoema, H. N. Hoang, M. Tamura, T. Matsuda
Tetrahedron Lett. 2020, 61, 152424.

52 Organic-inorganic nanocrystal reductase to promote green asymmetric synthesis
K. T.sriwong, A. A. Koesoema, T. Matsuda
RSC Advances, 2020, 10, 30953|30960.

51 Oxidation of aromatic and aliphatic aldehydes to carboxylic acids by Geotrichum candidum aldehyde dehydrogenase
T. Hoshino, E. Yamabe, M. A. Hawari, M. Tamura, S. Kanamaru, K. Yoshida, A. A. Koesoema, T. Matsuda
Tetrahedron. 2020, 76, 131387.

50 Control of enantioselectivity in the enzymatic reduction of halogenated acetophenone analogs by substituent positions and sizes
A. A. Koesoema, D. M. Standley, S. Ohshima, M. Tamura, T. Matsuda
Tetrahedron Lett. 2020, 61, 151820.

49 Access to both enantiomers of substituted 2-tetralol analogs by a highly enantioselective reductase
A. A. Koesoema, D. M. Standley, K. T.Sriwong, M. Tamura, T. Matsuda
Tetrahedron Lett. 2020, 61, 151682.

48 Reversible control of enantioselectivity by the length of ketone substituent in biocatalytic reduction
A. A. Koesoema, Y. Sugiyama, K. T.Sriwong, Z. Xu, S. Verina, D. M. Standley, M. Senda, T. Senda, T. Matsuda
Appl. Microbiol. Biotechnol. 2019, 103, 9529-9541.

47 Structural basis for a highly (S)-enantioselective reductase towards aliphatic ketones with only one carbon difference between side chain
A. A. Koesoema, Y. Sugiyama, Z. Xu, D. M. Standley, M. Senda, T. Senda, T. Matsuda
Appl. Microbiol. Biotechnol. 2019, 103, 9543-9553.

46 Modulating biocatalytic activity toward sterically bulky substrates in CO2-expanded biobased liquids by tuning the physicochemical properties
H. N. Hoang, E. Granero-Fernandez, S. Yamada, S. Mori, H. Kagechika, Y. Medina-Gonzalez, T. Matsuda
ACS Sustainable Chem. Eng., 2017, 5, 11051-11059. DOI: 10.1021/acssuschemeng.7b03018

45 CO2-expanded bio-based liquids as novel solvents for enantioselective biocatalysis
H. N. Hoang, Y. Nagashima, S. Mori, H. Kagechika, T. Matsuda
Tetrahedron 2017, 73, 2984-2989. http://dx.doi.org/10.1016/j.tet.2017.04.024

44 Expanding substrate scope of lipase-catalyzed transesterification by the utilization of liquid carbon dioxide
H. N. Hoang, T. Matsuda
Tetrahedron 2016, 72, 7229-7234. http://dx.doi.org/10.1016/j.tet.2015.11.052.

43 Crystallization and preliminary crystallographic analysis of acetophenone reductase from Geotrichum candidum NBRC 4597
Y. Sugiyama, M. Senda, T. Senda, T. Matsuda
Acta Crystallogr. F71, 2015, 320-323. doi:10.1107/S2053230X15002265.

42 Liquid carbon dioxide as an effective solvent for immobilized Candida antarctica lipase B catalyzed transesterification
H. N. Hoang, T. Matsuda
Tetrahedron Lett. 2015, 56, 639-641.

41 Acetophenone reductase with extreme stability against a high concentration of organic compounds or an elevated temperature
T. Yamamoto, Y. Nakata, C. Cao, Y. Sugiyama, Y. Asanuma, S. Kanamaru, T. Matsuda
Appl. Microbiol. Biotechnol. 2013, 97, 10413-10421. DOI: 10.1007/s00253-013-4801-5

40 Purification and characterization of fluorinated ketone reductase from Geotrichum candidum NBRC 5767
C. Cao, T. Fukae, T. Yamamoto, S. Kanamaru, T. Matsuda
Biochem. Eng. J. 2013, 76, 13-16. DOI: 10.1016/j.bej.2013.04.005

39 Reduction of acetophenones with methyl fluorines and a bulky group on the aromatic ring using microorganisms and related enzymes
C. Abe, T. Sugawara, T. Machida, T. Higashi, K. Hanaya, M. Shoji, C. Cao, T. Yamamoto, T. Matsuda, T. Sugai
J. Mol. Catal. B: Enzym. 2012, 82, 86-91.

38 Stabilization of pyruvate decarboxylase under pressurized carbon dioxide and water biphasic system
T. Matsuda, K. Nakayama, T. Abe, M. Mukouyama
Biocatal. Biotrans. 2010, 28, 167-171.DOI: 10.3109/10242421003734696

37 Transesterification of supercritical ethyl acetate by higher alcohol
M. Fusayasu, T. Kamitanaka, T. Sunamura, T. Matsuda, T. Osawa, T. Harada
J. Supercritical Fluids, 2010, 54, 231-236.

36 Ring-methylation of pyrrole and indole using supercritical methanol
N. Kishida, T. Kamitanaka, M. Fusayasu, T. Sunamura, T. Matsuda, T. Osawa, T. Harada
Tetrahedron, 2010, 66, 5059-5064.

35 Purification and characterization of acetophenone reductase with excellent enantioselectivity from Geotrichum candidum NBRC 4597
Y. Nakata, T. Fukae, R. Kanamori, S. Kanamaru, T. Matsuda
Appl. Microbiol. Biotechnol. 2010, 86, 625-631.

34 A novel method for enzymatic asymmetric reduction of ketones in a supercritical carbon dioxide / water biphasic system
T. Harada, Y. Kubota, T. Kamitanaka, K. Nakamura, T. Matsuda
Tetrahedron Lett. 2009, 50, 4934-4936.

33 The Meerwein-Ponndorf-Verley-Oppenauer type reaction in supercritical or high-temperature alcohols or acetone without catalyst: effect of oxidation enthalpy and solvent concentrations on yield
T. Kamitanaka, Y. Ono, H. Morishima, T. Hikida, T. Matsuda, T. Harada
J. Supercritical Fluids, 2009, 49, 221-226.

32 Utility of ionic liquid for Geotrichum candidum-catalyzed synthesis of optically active alcohols
T. Tanaka, N. Iwai, T. Matsuda, T. Kitazume
J. Mol. Catal. B: Enz. 2009, 57, 317-320.

31 Asymmetric reduction of ketones by Geotrichum candidum: immobilization and application to reactions using supercritical carbon dioxide
T. Matsuda, R. Marukado, M. Mukouyama, T. Harada, K. Nakamura
Tetrahedron: Asymmetry, 2008, 19, 2272-2275.

30 Novel Continuous Carboxylation Using Pressurized Carbon Dioxide by Immobilized Decarboxylase
T. Matsuda, R. Marukado, S. Koguchi, T. Nagasawa, M. Mukouyama, T. Harada, K. Nakamura
Tetrahedron Lett. 2008, 49, 6019-6020.

29 Transformation of benzonitrile into benzyl alcohol and benzoate esters in supercritical alcohols
T. Kamitanaka, K. Yamamoto, T. Matsuda, T. Harada
Tetrahedron, 2008, 64, 5699-5702.

28 Direct addition of supercritical alcohols, acetone or acetonitrile to the alkenes without catalysts
T. Kamitanaka, T. Hikida, S. Hayashi, N. Kishida, T. Matsuda, T. Harada
Tetrahedron Lett. 2007, 48, 8460-8463.

27 Mechanism for the reduction of ketones to the corresponding alcohols using supercritical 2-propanol
T. Kamitanaka, T. Matsuda, T. Harada
Tetrahedron, 2007, 63, 1429-1434.

26 An effective method to use ionic liquids as reaction media for asymmetric reduction by Geotrichum candidum
T. Matsuda, Y. Yamagishi, S. Koguchi, N. Iwai, T. Kitazume
Tetrahedron Lett. 2006, 47, 4619-4622.

25 Selective reduction of unsaturated aldehydes to unsaturated alcohols using supercritical 2-propanol
A. Daimon, T. Kamitanaka, N. Kishida, T. Matsuda, T. Harada
J. Supercritical Fluids, 2006, 37, 215-219.

24 Stereocontrolled synthesis of ƒΐ-difluoromethylated materials
T. Nihei, N. Iwai, T. Matsuda, T. Kitazume
J. Org. Chem. 2005, 70, 5912-5915.

23 Rate enhancement of lipase-catalyzed reaction in supercritical carbon dioxide
T. Matsuda, K. Tsuji, T. Kamitanaka, T. Harada, K. Nakamura, T. Ikariya
Chem. Lett. 2005, 34, 1102-1103.

22 Supercritical carbon dioxide as a reaction medium for enzymatic kinetic resolution of P-chiral hydroxymethanephosphinates
M. Albrycht, P. Kielbasinski, J. Drabowicz, M. Mikolajczyk, T. Matsuda, T. Harada, K. Nakamura
Tetrahedron: Asymmetry, 2005, 16, 2015-2018.

21 A Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions
I. A. Kaluzna, T. Matsuda, A. K. Sewall, M. R. Martzen, J. D. Stewart
J. Am. Chem. Soc. 2004, 126, 12827-12832.

20 High-efficiency and minimum-waste continuous kinetic resolution of racemic alcohols by using lipase in supercritical carbon dioxide
T. Matsuda, K. Watanabe, T. Harada, K. Nakamura, Y. Arita, Y. Misumi, S. Ichikawa, T. Ikariya
Chem. Commun. 2004, 2286-2287.

19 Reactions of supercritical alcohols with unsaturated hydrocarbons
T. Nakagawa, H. Ozaki, T. Kamitanaka, H. Takagi, T. Matsuda, T. Kitamura, T. Harada
J. Supercritical Fluids, 2003, 27, 255-261.

18 Control of enantioselectivity of lipase catalyzed esterification in supercritical carbon dioxide by tuning the pressure and temperature
T. Matsuda, R. Kanamaru, K. Watanabe, T. Kamitanaka, T. Harada, K. Nakamura
Tetrahedron: Asymmetry, 2003, 14, 2087-2091.

17 Crystallization Condition of Glassy Syndiotactic Polystyrene in Supercritical CO2
T. Nakaoki, Y. Fukuda, E. Nakajima, T. Matsuda, T. Harada
Polymer Journal, 2003, 35, 430-435.

16 Reduction of acetophenone using supercritical 2-propanol: the substituent effect and the deuterium kinetic isotope effect
T. Kamitanaka, T. Matsuda, T. Harada
Tetrahedron Lett. 2003, 44, 4551-4553.

15 Biocatalytic reduction of ketones by a semi-continuous flow process using supercritical carbon dioxide
T. Matsuda, K. Watanabe, T. Kamitanaka, T. Harada, K. Nakamura
Chem. Commun. 2003, 1198-1199.

14 Asymmetric reduction of simple aliphatic ketones with dried cells of Geotrichum candidum
T. Matsuda, Y. Nakajima, T. Harada, K. Nakamura
Tetrahedron: Asymmetry, 2002, 13, 971-974.

13 Control on enantioselectivity with pressure for lipase catalyzed esterification in supercritical carbon dioxide
T. Matsuda, R. Kanamaru, K. Watanabe, T. Harada, K. Nakamura
Tetrahedron Lett. 2001, 42, 8319-8321.

12 Conversion of pyrrole to pyrrole-2-carboxylate by cells of B. megaterium in supercritical CO2
T. Matsuda, Y. Ohashi, T. Harada, R. Yanagihara, T. Nagasawa, K. Nakamura
Chem. Commun. 2001, 2194-2195.

11 Asymmetric synthesis of (R)-2-chloro-1-(m-chlorophenyl)ethanol using acetone powder of Geotrichum candidum
H. Hamada, T. Miura, H. Kumobayashi, T. Matsuda, T. Harada, K. Nakamura
Biotechnol. Lett. 2001, 23, 1603-1606.

10 Alcohol dehydrogenase is active in supercritical carbon dioxide
T. Matsuda, T. Harada, K. Nakamura
Chem. Commun. 2000, 1367-1368.

9 Mechanism for improving stereoselectivity for asymmetric reduction using acetone powder of microorganism
T. Matsuda, T. Harada, N. Nakajima, K. Nakamura
Tetrahedron Lett. 2000, 41, 4135-4138.

8 Two classes of enzymes of opposite stereochemistry in an organism: one for fluorinated and another for non-fluorinated substrates
T. Matsuda, T. Harada, N. Nakajima, T. Itoh, K. Nakamura
J. Org. Chem. 2000, 65, 157-163.

7 Stereoselective oxidation and reduction by immobilized Geotrichum candidum in an organic solvent
K. Nakamura, Y. Inoue, T. Matsuda, I. Misawa
J. Chem. Soc. Perkin Trans. 1, 1999, 2397-2402.

6 Asymmetric reduction of ketones by the acetone powder of Geotrichum candidum
K. Nakamura, T. Matsuda
J. Org. Chem. 1998, 63, 8957-8964.

5 Asymmetric reduction of trifluoromethyl ketones containing a sulfur functionality by the alcohol dehydrogenase from Geotrichum
K. Nakamura, T. Matsuda, M. Shimizu, T. Fujisawa
Tetrahedron, 1998, 54, 8393-8402.

4 Asymmetric synthesis of (S)-arylalkanols by microbial reduction
K. Nakamura, T. Matsuda, A. Ohno
Tetrahedron: Asymmetry, 1996, 7, 3021-3024.

3 Different stereochemistry for the reduction of trifluoromethyl ketones and methyl ketones catalyzed by alcohol dehydrogenase from Geotrichum
K. Nakamura, T. Matsuda, T. Itoh, A. Ohno
Tetrahedron Lett. 1996, 37, 5727-5730.

2 Asymmetric reduction of ketones by the acetone powder of Geotrichum candidum
K. Nakamura, K. Kitano, T. Matsuda, A. Ohno
Tetrahedron Lett. 1996, 37, 1629-1632.

1 Microbial deracemization of 1-arylethanol
K. Nakamura, Y. Inoue, T. Matsuda, A. Ohno
Tetrahedron Lett. 1995, 36, 6263-6266.


Review etc.



Recent advances in enzyme immobilization utilizing nanotechnology for biocatalysis
K. T.sriwong, T. Matsuda
Org. Process Res. Dev. 2022, in press.

Chapter 9 Application of Nonaqueous Media in Biocatalysis
A. A. Koesoema, T. Matsuda
In Biocatalysis for Practitioners: Techniques, Reactions and Applications, Eds. G. d. Gonzalo, I. Lavandera, Wiley-VCH GmbH, 2021, p 247-274.

Impact and relevance of alcohol dehydrogenase enantioselectivities on biotechnological applications
A. A. Koesoema, D. M. Standley, T. Senda, T. Matsuda
Appl. Microbiol. Biotechnol. 2020, 104, 2897|2909.

Chapter 7. Biocatalysis in Supercritical and Liquid Carbon Dioxide and Carbon Dioxide-expanded Liquids
H. N. Hoang, K. R. A. Are, T. Matsuda
In Supercritical and Other High-pressure Solvent Systems: For Extraction, Reaction and Material Processing (Green Chemistry Series) Eds. A. J. Hunt, T. M Attard, Royal Society of Chemistry, 2018, p 191 | 220.

Chapter 1. Biotransformation Using Liquid and Supercritical CO2
H. N. Hoang, T. Matsuda
In Future directions in biocatalysis, 2nd edition, Ed. T. Matsuda, Elsevier, 2017, p 3-25.

Future directions in biocatalysis, 2nd edition
T. Matsuda, Ed. Elsevier, Amsterdam, 2017.

Chapter 11. Enzymatic Asymmetric Reduction of Carbonyl Compounds @
T. Matsuda, R. Yamanaka, K. Nakamura In Green Biocatalysis, Ed. R. N. Patel, Wiley & Sons, 2016, p 307-330.ISBN: 978-1-118-82229-6@

Chapter 3. Biocatalysis in organic solvents, supercritical fluids and ionic liquids
C. Cao, T. Matsuda In Organic synthesis using biocatalysis, Eds. A. Goswami, J. D. Stewart, Elsevier, 2016, p 67-99. ISBN: 978-0-12-411518-7

Biocatalytic asymmetric reduction of C=O and activated C=C bonds in stereoselective synthesis
T. Matsuda, R. Yamanaka, K. Nakamura In Stereoselective synthesis of drugs and natural products, Eds. V. Andrushko, N. Andrushko, Wiley, 2013, p. 1015-1042. ISBN: 978-1-118-03217-6

Recent progress in biocatalysis using supercritical carbon dioxide
T. Matsuda J. Biosci. Bioeng. 2013, 115, 233-241. DOI: 10.1016/j.jbiosc.2012.10.002@

Asymmetric catalytic synthesis in supercritical fluids
T. Matsuda In Catalytic methods in asymmetric synthesis: advanced materials, techniques, and applications, Eds. M. Gruttadauria, F. Giacalone, New Jersey, Wiley, 2011, Chapter 9, p. 373|390.(http://onlinelibrary.wiley.com/book/10.1002/9781118087992)

Chiral pyrrolidine-substituted ionic liquid-mediated activation of enzyme
T. Itoh, Y. Abe, T. Hirakawa, N. Okano, S. Nakajima, S. Hayase, M. Kawatsura, T. Matsuda, K. Nakamura In Ionic liquid applications: pharmaceuticals, therapeutics, and biotechnology, Ed. S. Malhotra, ACS Symposium Series, American Chemical Society: Washington, DC, 2010, Chapter 13, p. 155-167.

Enzyme-catalyzed reduction of carbonyl compounds
K. Nakamura, T. Matsuda
In Modern reduction methods, Eds. P. G. Andersson, I. J. Munslow, Wiley-VCH, Weinheim, 2008, 209-234.

Enzymatic reduction reaction
K. Nakamura, T. Matsuda
In Asymmetric organic synthesis with enzymes, Eds. V. Gotor, I. Alfonso, E. Carcia-Urdiales, Wiley-VCH, Weinheim, 2008, 193-228.

Future directions in biocatalysis
T. Matsuda, Ed. Elsevier, Amsterdam, 2007.

Biocatalysis in Water
K. Nakamura, T. Matsuda
in Organic Reactions in Water - Principles, Strategies and Applications, Ed. U. M. Lindstršm, Blackwell Publishing Ltd., Oxford, 2007, p301-349.

Biocatalytic Reduction of Carbonyl Groups
K. Nakamura, T. Matsuda
Current Organic Chem., 2006, 10, 1217-1246.

Synthesis of Chiral Fluorinated Materials via Biotransformation
T. Kitazume, T. Matsuda, K. Nakamura
In Advances in Organic Synthesis, Vol. 2, Eds. K. Laali, A. Rahman (Ed.), Bentham Science Publishers. The Netherlands, 2006, 463-490.

Asymmetric synthesis using hydrolytic enzymes in supercritical carbon dioxide
T. Matsuda, T. Harada, K. Nakamura, T. Ikariya
Tetrahedron: Asymmetry, 2005, 16, 909-915.

Biocatalysis in supercritical CO2
T. Matsuda, T. Harada, K. Nakamura
Current Organic Chem., 2005, 9, 299-315.

Enzymatic kinetic resolution
K. Nakamura, T. Matsuda
in Enantimer Separation: Fundamentals and Practical Methods, Ed. F. Toda, Kluwer Academic Publishers, Dordrecht, 2004, p231-266.

Carboxylation of pyrrole to pyrrole-2-carboxylate by cells of Bacillus megaterium in supercritical carbon dioxide
T. Matsuda, T. Harada, T. Nagasawa, K. Nakamura,
in Catalysts for Fine Chemical Synthesis, Vol. 3, Metal Catalysed Carbon-Carbon Bond-Forming Reactions, Edited by S. M. Roberts, J. Xiao, J. Whittall, and T. Pickett, John Wiley & Sons, West Sussex, 2004, p. 247 - 250.

Enzymatic reactions in supercritical CO2: carboxylation, asymmetric reduction and esterification
T. Matsuda, K. Watanabe, T. Harada, K. Nakamura
Catalysis Today, 2004, 96, 103-111.

Organic synthesis using enzymes in supercritical carbon dioxide
T. Matsuda, T. Harada, K. Nakamura
Green Chem., 2004, 6, 440-444.

Recent developments in asymmetric reduction of ketones with biocatalysts
K. Nakamura, R. Yamanaka, T. Matsuda, T. Harada
Tetrahedron: Asymmetry, 2003, 14, 2659-2681.

Chiral synthesis of secondary alcohols using Geotrichum candidum
K. Nakamura, T. Matsuda, T. Harada
Chirality, 2002, 14, 703-708.

Reduction reactions
K. Nakamura, T. Matsuda
in Enzyme Catalysis in Organic Synthesis A Comprehensive Handbook, Eds. K. Drauz, H. Waldmann, Wiley-VCH Verlag GmbH, Weinheim, 2002, p. 991-1047.

–––––––––––––––––

Department of Life Science and Technology
School of Life Science and Technology
Tokyo Institute of Technology

Matsuda Research Group

J3-5 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan, 226-8501
Tel/Fax: +81 45-924-5757
Office J3-913, Student room J3-914, Experiment rooms J3-915 and 921
E-mail tmatsuda @ bio.titech.ac.jpiPlease delete spaces before and after "@"j@